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Abstract—Automatic Target Recognition (ATR) algorithms
classify a given Synthetic Aperture Radar (SAR) image into
one of the known target classes using a set of training images.
Recently, learning methods have shown to achieve state-of-the-
art classification accuracy if abundant training data is available
sampled uniformly over the classes and their poses. In this
paper, we consider the problem of improving the generalization
performance of learning methods in SAR-ATR when training
data is limited. We propose a data augmentation approach using
sparse signal models that capitalizes on commonly observed
phenomenology of wide-angle synthetic aperture radar (SAR)
imagery. Specifically, we exploit the sparsity of the scattering
centers in the spatial domain as well as the limited persistence of
the scattering coefficients in the azimuthal domain to solve the
ill-posed problem of over-parametrized model fitting. Using this
fitted model, we synthesize new images at poses not available
in training set to augment the training data used by CNN.
We validate the performance of the proposed model based data
augmentation strategy on subsampled versions of the MSTAR
dataset. The experimental results show that for the training data
starved region, the proposed method provides a significant gain in
the generalization performance of the resulting ATR algorithm.

Index Terms—Deep Learning, Automatic Target Recognition,
Data Augmentation, Compressive sensing.

I. INTRODUCTION

Synthetic aperture radar (SAR) sensing has been widely
utilized in obtaining high-resolution imagery of a region of
interest, that is robust to weather and other environmental
factors. The SAR sensor consists of a moving radar platform
with a collocated receiver and transmitter that traverses a wide
aperture in azimuth, acquiring coherent measurements. Multi-
ple pulses across the synthesized aperture are combined and
coherently processed to produce high-resolution SAR imagery.
A significant fraction of the energy in the back-scattered signal
from the scene is due to a small set of dominant scattering
centers, that are resolved by the SAR sensor. The localization
of backscatter energy provides a distinct description of targets
of interest [1], typically man-made objects such as civilian
and military vehicles. This sparsity structure has been utilized
in [2], [3] to design features like peak locations, edges that
succinctly represent the scene. These hand-crafted features, in
conjunction with template based methods or statistical meth-
ods, are subsequently used in solving the target recognition
problem. The template based methods exploit the geometric
structure and variability of these features in the scattering
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centers in [4], [5] to distinguish between the different target
categories. The scattering center based target signature varies
with the pose angle of the target with respect to the sensor
platform. Statistical methods can explicitly model and uti-
lize this low-dimensional manifold structure of the scattering
center descriptors [6], [7] for improved decisions as well as
integrating information across views [8], [9].

However, ATR algorithms based on these hand-crafted fea-
tures are limited to the information present in these descriptors,
and lack the generalization ability to variability in clutter, pose,
and noise. With the advent of data-driven algorithms such as
artificial neural networks (ANN), an appropriate feature set
and a discriminating function can be jointly estimated using
a unified objective-function. Recent advances in techniques to
incorporate deep hierarchical structures used in ANN [10] has
led to the widespread use of these methods to solve inference
problems in a diverse set of application areas. Convolutional
Neural Networks (CNNs), in particular, have been used as an
automatic feature extractor for image data. Such methods have
also been adopted in solving the automatic target recognition
(ATR) problem using SAR images [11], [12]. These results
establish that the CNNs could be effective in radar image
classification as well, provided sufficient training data is
available. But in general, labeled radar data is not available
in abundance, unlike other image datasets. In this paper, we
address the problem of scarcity of training data and provide a
general method that utilizes a model-based approach to capture
the underlying scattering phenomenon to enrich the training
dataset.

One of the most effective techniques to tackle the problem
of small datasets is the use of transfer learning. Transfer-
learning implies using the model parameters, estimated using
a similar dataset, as initialization for solving the problem of
interest. The most common example of this is, re-using the
CNN weights of a model trained on a vast labeled dataset
like Image-net [13]. It is conjectured that as natural-images
have several similar characteristics, the same feature extractors
can be used with little to no fine-tuning. There have been
numerous experiments supporting the claim, including the
seminal work in [14]. In contrast, radar images are signifi-
cantly different from the regular optical images. In particular,
SAR works in the wavelength of 1cm. to 10m. while visible
light has a wavelength of the order of 1nm.. As a result,
most surfaces in natural scenes are rough for light waves
of such small wavelengths, leading to diffused reflections. In
contrast, microwaves from radar transmitters undergo specular
reflections, especially for man-made objects. This difference978-1-7281-8942-0/20/$31.00 c©2020 IEEE
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in scattering behavior leads to substantially different images
in SAR when compared to optical imaging. Being based on
specular reflections also means that the images are much more
sensitive to instantaneous factors like the orientation of the
imaging device and background clutter. It implies that the
readily available optical imagery-based deep neural network
models like Alex-net and VGG16 [15] are not suitable for
transferring knowledge to this domain. Retraining the network
is again inhibited by the limited availability of radar data.
So, we explore an alternative strategy to transfer learning,
based on data augmentation of radar image datasets using a
principled approach of augmenting the dataset that respects
the phenomenology of the RF back-scatter data. The paper
is structured as follows. We first review relevant research
work and outline our contributions in sections I-A and I-B,
respectively. In section II-A, we describe the dataset and net-
work architecture in detail. The details of our pose-synthesis
methodology is described in section II-B. This is followed by
the experiments and corresponding results in sections III and
IV, respectively, which provide the empirical evidence for the
effectiveness of the proposed data augmentation method. We
conclude with some possible directions for future research in
section V.

A. Related Work

The problem of over-fitting in ANNs magnifies when the
size of the training set is small. Several methods have been
proposed to reduce over-fitting and improve generalization
performance. These ill-posed problems are typically solved
by using regularizers that impose structure and constraints
in the solution space. Apart from standard norm penalties
(`1 and `2), Dropout [16], Batch Normalization [17], over-
parameterization [18] and variants of stochastic gradient de-
scent (SGD) [19] induce regularization, either explicitly or
implicitly. Transfer Learning is another approach used for
improving generalization performance in limited availability
of data [20], [21]. For SAR data, there exist several ANN
architecture-based approaches to improve generalization [22],
[23], [24]. Few other approaches focus on learning special
type of features [25]–[29]. Data Augmentation is considered
yet another regularization strategy because it serves to reduce
the generalization error while not affecting the training error
[30]–[35]. This is the main focus of our paper and involves
augmenting the training data-set by transforming original data
through domain-specific transformations. In [12], Zhong et al.
exploited the symmetric nature of most objects in the MSTAR
Dataset by adding flip-augmentations with a reversed sign of
the azimuthal angle. They also used the pose (azimuthal angle)
prediction as a secondary objective for training the network.
They empirically showed that this helps by adding meaningful
constraints to the network learning. There have been several
other models proposed to tackle the ATR problem with the
MSTAR data-set, including [36] and [37], but we primarily
build upon Zhong et al.’s [12] work.

B. Contributions

In this paper we introduce a principled approach for pose
synthesis based on sparse modeling of available images in
the training data. The modeling is performed in phase history
domain, after images have been transformed to k-space. We
then fit an over-parameterized model inspired by the scatter-
ing behavior of canonical reflectors. Specifically, our model
captures the viewing-angle dependent anisotropic scattering
behavior of scattering centers that makes up the target and
realistically model nearby poses. Additionally, our model
allows us to generate scintillation effects due to sub-pixel shifts
in the augmented images. These sub-pixel shifts are typically
not possible in the traditional image domain operations. We
hypothesize that these two factors are essential to improving
the network’s knowledge about the underlying phenomenology
of the SAR imaging process. We validate the effectiveness
of the proposed method through empirical results, which
show a significant boost in generalization performance. It is
important to note that our data-augmentation based strategy
is generic and decoupled with the network architectures pro-
posed in other works like [23], [22]. We hypothesize that
the proposed augmentation strategy, in conjunction with the
above-mentioned methods, may further improve results. Our
objective here is to demonstrate the benefits of the proposed
data-augmentation strategy by fixing the network structure
similar to a well studied CNN model by Zhong et al. [12].

II. A PHASE-HISTORY MODEL BASED DATA
AUGMENTATION

We want to learn a parametric Neural Network classifier,
with parameters w ∈ Rdw , that predicts an estimate of output
labels, Y ∈ RdY for an input X ∈ CdX , i.e. Ŷ = g(X;w)
where dX , dw and dY are dimensions of X , w and Y ,
respectively. We consider a supervised learning setting, where
a labeled training data-set Dtrain = {(Xu, Yu)}Ntrainu=1 is used
to estimate classifier parameters w, where Ntrain are total
number of training samples. The training procedure is the
minimization of an appropriate loss function L : (w,D)→ R
using an iterative algorithm like Stochastic Gradient Descent.
Therefore, the learned w∗ are the solution of the following
minimization problem.

w∗ = P(D) = arg min
w
L(w,D) (1)

Data augmentation involves applying an appropriate trans-
formation T : Din → Dout to a data-set (only Dtrain for
our purposes) and hence expand it to an augmented data-
set T (Dtrain). We also have a validation data-set, Dval =
{(Xu, Yu)}Nvalu=1 for cross-validation during training and a test
data-set, Dtest = {(Xu, Yu)}Ntestu=1 for evaluating g(X;w)
post-training. The evaluation can be done using a suitable
metricM : (w,D)→ R which maybe different from L above.
Our aim is to find T such that the learnt parameters waug =
P(T (Dtrain)) perform better than wtrain = P(Dtrain) in
terms of the chosen metric, i.e. M(waug,Dtest) is more
desirable than M(wtrain,Dtest).
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Fig. 1: The Neural Network Architecture. The abbreviations used are as
follows. Conv is Convolutional Layer followed by the kernel height × width.
MP is max-pooling followed by the pooling-size as height × width. RL, BN,
Flat, Drop and FC are ReLU, Batch-Normalization, Flattening, Dropout and
Fully-Connected layers respectively. Sizes of feature maps are mentioned at
their top as height × width × channels.

A. Data-set & Neural Network Model

The MSTAR data-set consists of 10 classes of various
military vehicles. We use a balanced subset of the data-set,
which is referred to as standard operating conditions and is
also used by ( [22], [21]). We denote this subset as SOC
MSTAR data-set henceforth. Similar to the existing literature,
we use the images at depression angle, φ = 17◦ for training
while images at φ = 15◦ form the test set. Similar to [12],
we crop the images to 64 × 64 with the objects in the
center. Note that we crop the images right before feeding
it to the ANN. We perform the modeling and augmentation
steps on the original images. To investigate the effects of
data augmentation, we artificially sub-sample SOC data-set at
φ = 17◦ by extracting only R ratio of samples from each class
where R ∈ {2−5, 2−4, 2−3, 2−2, 2−1, 20}. We further select
15% of uniformly distributed samples from this uniformly sub-
sampled data as the validation set and utilize the remaining
85% as the new training set. The training-data Dtrain includes
real-time pixel-level translations [32] in range and cross-range
domain as well as the flip augmentation along cross-range
domain [12] and is just referred to as data or data-set. We form
our T (Dtrain) by performing the proposed pose augmentation
on each radar image in the training data-set as described in
the next section II-B. We include flip-augmentation in the final
validation set Dval and no augmentations are included in the
final test-set Dtest.

We utilize a network architecture inspired by [12] and
shown in Fig. 1. We modify the cosine cost used for pose-
awareness in [12] to a pair of simple costs using features
Y2 = sin(θ) and Y3 = 1A(θ) where θ is the azimuthal angle
and 1A is the indicator function over set A = [−π2 ,

π
2 ]. The

loss function to find the network parameters is now

L(w,D) = ĒD[L1(w,X, Y1) + L2(w,X, Y2)+

L3(w,X, Y3)] (2)

L1(w,X, Y1) = −
10∑
p=1

Y1,p log
(
Ŷ1,p(w, |X|)

)
L2(w,X, Y2) = (Y2 − Ŷ2(w, |X|))2

L3(w,X, Y3) = −Y3 log
(
Ŷ3(w, |X|)

)
− (1− Y3) log

(
1− Ŷ3(w, |X|)

)
where |.| denotes the absolute value, |X| ∈ R+

64×64, Y1 ∈
{0, 1}10×1, Y2 ∈ [−1, 1], Y3 ∈ {0, 1} refer to absolute values
of complex radar images, the one-hot vector of the 10 classes,

sin(θ) and 1A(θ) respectively. ĒD refers to the empirical mean
over data-set D and Y1,p is the pth component of the vector Y1.
All the quantities withˆ (hat) are the corresponding estimates
given by the ANN.

B. Pose Synthesis Methodology

This section describes the pose synthesis methodology used
for data augmentation by estimating a Phase History (PH)
model. The strategy is a modified version of our earlier work,
which focused on modeling the scattering behavior of targets
in monostatic and bistatic setup [38]–[40]. The images in the
MSTAR data-set are not correctly registered. Therefore, we
construct the model for each image and locally extrapolate
the measurements. The SAR operating in spotlight mode
has been used to create the images in the MSTAR data-set.
The images are translated from the spatial domain to the
cartesian frequency domain using the steps described in [41].
Subsequently, we convert the frequency measurements to the
polar coordinates to obtain the phase-history measurements
as described in [42]. We consider a square patch on the
ground of side lengths L = 30m with the target at the center.
From the Geometric theory of diffraction, we assume that
a complex target can be decomposed into a sparse set of
scattering centers. The scattering centers are assumed to be K
point targets, described using {(xk, yk), hk(θ, φ)}Kk=1 where
(xk, yk) ∈ [−L2 ,

L
2 ] × [−L2 ,

L
2 ] are the spatial coordinates

of the point targets, θ is the azimuthal angle, φ is the
angle of elevation of the radar platform and hk(θ, φ) are
the corresponding scattering coefficients that depend on the
viewing angle. Parametric models for standard reflectors such
as dihedral and trihedral were studied in [43]–[45]. These
models indicate that the reflectivity is a smooth function
over the aspect angle parameterized by the dimensions and
orientation of the reflector, which is not known apriori. There-
fore, we exploit this smoothness to approximate this infinite-
dimensional function using interpolation strategies [46] with
the available set of samples, Θ, in the angle domain. We
denote the sampled returns from the scene by the matrix
S = NUFFT (X) ∈ CNθ×M , X ∈ C64x64 is the complex
image from the dataset and NUFFT represents the non-uniform
fourier transform. The elements of S are defined as follows

s(m, i) = n(m, i) +
K∑
k=1

hk(θi, φ)

exp

(
−j4πfm cos(φ)

c
(xk cos(θi) + yk sin(θi))

)
. (3)

where n(m, i) represents the measurement noise, fm such that
m ∈ [M ] are the illuminating frequencies, M = 2BL

c , B is
bandwidth of transmitted pulse, c is the speed of light and the
notation [M ] denotes enumeration of natural numbers upto M .
We estimate the function hk(θ, φ) ∀ k ∈ [K] from the receiver
samples.

In order to solve the estimation problem, we assume that
the function hk has a representation in a basis set denoted
by the matrix Ψ ∈ CNθ×D of size D. For the MSTAR
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data-set, the elevation angles we work with are quite close.
So we also assume that the variation in hk with respect to
φ is insignificant. This assumption leads to the following
relation hk(θ;φ) =

∑D
v=1 cv,kψv(θ) + εP . Let vector ck =

[c1,k · · · cD,k]T . The estimated phase-history matrix is now Ŝ
whose elements are given by

ŝ(m, i) = n̂(m, i) +
K∑
k=1

D∑
v=1

cv,k exp

−(θ − θ̂v
2σG

)2


exp

(
−j4πfm cos(φ)

c
(xk cos(θi) + yk sin(θi))

)
,

(4)

where n̂(m, i) consists of the measurement noise and the
approximation error. To estimate the coefficients cv,k from
the noisy measurements in (4), we discretize the scene with
resolution of ∆R in x, y (range, cross-range) plane to get
K = N2

R grid points, where NR = 2BL
c is the number

of range bins. Furthermore, we consider a smooth Gaussian
function to perform the noisy interpolation. We partition the
sub-aperture 2∆θ into smaller intervals of equal length with a
corresponding set containing the means of the intervals given
by {θ̂v}Dv=1, where D = 12, which are used as the centroids
for the Gaussian interpolating functions. We assume the width
of the Gaussian function, σG as a constant hyper-parameter
whose selection is described in section III-A. Hence, σG is
the constant minimum persistence of the scattering center in
azimuth that we wish to detect.

Here, the discrete grids for (xk, yk) and (θi, fm) are both
known. Let the vectors containing all corresponding grid
points for xk, yk, θi, fm be referred as x,y,θ, f respectively.
The problem now is to find the coefficients cv,k that minimizes
some metric between Ŝ and S. To recover the structured signal
h = [h1 · · ·hN2

R
], which represents the scattering coefficient of

a sparse scene that has a sparse representation in an underlying
set of functions, we solve the following linear inverse problem
using a sparse-group regularization on ck∀ k ∈ [N2

R].

min
C

N2
R∑

k=1

λ ‖ck‖2 +
∥∥∥S− Ŝ

∥∥∥
F

⇐⇒ min
C

J(C, σG) (5)

where C refers to the matrix [c1 · · · cN2
R

], σG is a constant
hyper-parameter and ‖·‖F refers to the Frobenius norm. The
phase-history measurements are converted back to the image
using overlapping sub-apertures spanning 3 degrees in the
azimuth domain as shown in Fig. 2. We apply the same
Taylor window with zero-padding and translate it back to the
Cartesian coordinates before applying the Fourier transform to
generate the images to augment the data-set.

III. EXPERIMENTS

A. Experimental Setup

The experiments were done using the network and data-
sets, as described in section II-A. This model is run on a
local machine with a Titan Xp GPU. The Tensorflow (1.10)

Fig. 2: Extrapolating by δθ using the model estimated from data.

library is used for the implementation through its python API.
We use ReLU activation function everywhere except the final
output layers of Ŷ1, Ŷ2, and Ŷ3 where we use Softmax acti-
vation, Linear and Sigmoid activations respectively. We first
bring the data to K-space and then invert the transformations
done when the MSTAR data was prepared, to get the phase
history representation. Using available information about the
MSTAR dataset, we determine the discrete grids for (xk, yk)
and (θi, fm). Now, the model coefficients are determined by
solving the optimization problem described in equation (5).
As a result, we obtain the model, say F (θ; f). This model
is further used to synthesize new columns of phase-history
data (or extending the θ vector) and consequently produce
a synthesized image by the procedure described in section
II-B followed by transformation of phase history data to
complex image data. This pose augmentation along-with sub-
pixel shifts constitute our net augmentation transformation
T . For training the network, we used the magnitude of the
complex radar data as input, X , as we found it to be the most
effective and efficient way for ATR with MSTAR data-set,
in agreement with the existing literature. We normalize all
input images to unit-norm to reduce some undesired effects
due to the use of the Gaussian kernel in extrapolation. We
also remove all the synthetic images at poses already in the
corresponding training set. Then, the optimization problem in
equation (1) is solved using the off-the-shelf, Adam variant of
the Mini-batch Stochastic Gradient Descent optimizer with a
mini-batch size of 64. In accordance with the early-stopping
training regime, the training is run for a large no. of epochs
(> 400), and the model is saved whenever it gets the best
moving average validation performance with a moving average
window of 1 to 4 epochs (depending upon the R values).
Although we use the accuracy as the performance metric
M, the Dval here get really small, especially for small R
values. This makes the validation accuracy to easily saturate at
100%, yielding this metric useless. So instead, we monitor the
minimum classification loss, L1, as the validation performance
metric.

We now explain our choices of a subset of hyper-parameters
and mention some others. Rest were kept at the default values
of the Tensorflow (1.10) library. The PH model has 2 main
hyper-parameters, the σG and δθ. We determine optimum
σ∗G = arg minσG [minC J(C, σG)] for every image by using a
simple line-search. We choose appropriate δθ by running a grid
search over a factor η such that δθ = ησ∗G where η ∈ {1, 2, 3}.
For the ANN model, we set dropout rate at 0.2. We add real-
time x-y translations to every image where each translation
is randomly sampled from the set {−6,−4,−2, 0, 2, 4, 6}, at
every epoch.
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TABLE I: Test Accuracy from different Methods.

Ratio (R) Existing Proposed Full
2−5 67.619 ± 2.926 81.34 ± 3.218 95.454 ± 0.572
2−4 81.216 ± 2.404 92.67 ± 0.543 97.928 ± 0.209
2−3 89.01 ± 0.73 96.68 ± 1.311 98.784 ± 0.262
2−2 95.794 ± 0.831 99 ± 0.343 99.01 ± 0.168
2−1 98.557 ± 0.33 99.464 ± 0 99.278 ± 0.062
20 99.505 99.629 99.505

IV. RESULTS

A. It’s all about the features

We hypothesize that such a data augmentation strategy
primarily affects the feature extractors or the convolutional
layers of the CNN. The classifier can then be trained and
will perform well even with small data-sets. Therefore, we
present all our results with respect to the extracted features.
To this end, we first learn all network parameters using the
specified data-set. Then, we retrain the classifier layers (after
and including the first FC layer) from scratch using the
corresponding sub-sampled, non-augmented data only. This is
repeated for all 6 values of R. All the models have the same
architecture as described in section II-A and use the same
Dtest. The difference among them is the Dtrain and Dval
used as described in section II-A. For consistency of results,
we repeat the process described in section II-A to get four
different Dtrain and Dval for each R (except for R = 2−1

and R = 20 where only two and one such unique data-sets
were possible, respectively) and report average performance
results in table I.

The column referred to as the ”Full” learned features
from full SOC training data-set. It shows the importance of
extracting good quality features, i.e., if we had access to all
the poses, we would learn the best features. Having good
features makes classification quite easy, which is evident from
the high test accuracies even in low data availability. The sub-
sampling has little effect on the generalization performance in
this case. The ”Existing” column learned features from Dtrain
and shows considerably lower test performance, especially in
low data availability. This test performance is significantly
improved in the ”Proposed” column which learned features
from T (Dtrain). This shows the effectiveness of our strategy
in improving the quality of the features extracted by the
CNN. However, there exists a considerable gap between the
Full and the Proposed columns in the low data regime. So,
there still exists scope for additional improvement in feature
extraction. We further did a decoupled investigation on the
two augmentation strategies introduced, for observing their
respective contributions to the overall results. For this, we
carried out two experiments at R = 2−3. In the first, we
did only sub-pixel level shifts as augmentation in addition to
the existing data (as described in section II-A) to see how
knowledge about scintillations, affects the performance. We
got 92.794 ± 1.779 test accuracy (%) which is more than 3%
improvement over the performance of existing data. Similarly,
for the second experiment, we did only pose-based augmenta-
tion to the existing data and got 95.814 ± 0.337 test accuracy

(%) which is fairly close to the final performance we get using
both augmentations together. These results provide two useful
conclusions. First, the gains from these two augmentations are
not additive in nature. Second, the majority of gains come from
the synthesized pose information.

V. CONCLUSION

In this paper, we presented a data-augmentation strategy
for training the ANN architectures to solve the ATR problem
with limited labeled data. We empirically verified the effec-
tiveness of the augmentation strategy by training an ANN with
the augmented data-set synthesized using the phase-history
approximation method proposed in [38], [47]. We verified
that the proposed model based augmentation strategy gave
a significant improvement in the generalization performance
of the model compared to the baseline performance over a
wide range of sub-sampling ratios. However, the presented
augmentation strategy only creates valid images around a small
neighborhood of the given azimuth angle. We hypothesize
that a global model for each class can be constructed jointly
from all images belonging to that class, which in turn can
produce a diverse set of SAR images over larger variations of
poses. Since the MSTAR target image chips are not correctly
registered and aligned across different azimuth angles, such
a modeling effort has to incorporate an unknown correction
phase ramp term for each image chip to generate a unified
model in the phase-history domain successfully. As part of
future research, we propose to develop a network architecture
to learn a unified model directly in the complex domain that
can account for these phase errors and synthesize a larger data-
set to improve the performance of the classifier further.
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